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Abstract

This paper addresses the problem of uncoded multiple access (MA) joint detection for the
case in which user signatures are linearly dependent. The linearly dependent scenario would
occur when the number of users in a communication system is increased beyond the dimension
of the signal space available for transmission. This "over-saturating" of the signal space can, in
principle, be accomplished with minimal impact on system performance, assuming that optimal
detection can be implemented. The optimal detector for the general over-saturated case has a
complexity which is exponential in the number of users. In order to find a joint detector for
the MA communication of K > N users in N dimensional signal space, we impose a hierar-
chical cross-correlation structure on the user signature waveforms. This paper develops a tree
processing procedure which takes advantage of this structure to give the optimal estimate with
an extremely low computational complexity. We show this complexity to be (in typical cases)
a low-order-polynomial in the number of users. This is an enormous savings in computations
over the 0( 2 K) computations needed if the signatures did not exhibit any structure.
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1 Introduction

Multiple access (MA) communication represents an active area of current research since it is the
only means of communication among users in wireless systems such as mobile and cellular terrestrial
systems and satellite-based systems. In each of these applications the possibility of many users
sharing the available communication channel offers obvious advantages in terms of flexible and cost-
efficient use of the channel. In addition, MA also poses a number of challenging research problems
including many that fall within the domain of signal processing. This paper investigates one of those
challenges, namely, the problem of optimal detection in uncoded MA communications.

The importance and difficulty of the problem of detection in an uncoded MA system has been
recognized for some time ([1, 2, 3, 4]). In particular, consider a pulse-amplitude-modulated (PAM)
communication system in which each user transmits a distinct waveform, the amplitude of which
is modulated by a weight corresponding to the information to be communicated.1 If there is only
one user transmitting through an additive white Gaussian noise channel, optimal detection at the
receiver is realized by a simple matched filter followed by a quantization to the closest weight used
in transmission [5]. If, however, many users were to transmit through the channel the situation can
become far more complex.

The Problem
Time-bandwidth restrictions on any communication system limit the dimension, N, of the space
of possible user waveforms. Adopting the commonly-used vector space framework we identify the
N-dimensional signal space with ERN and can then state the multiuser joint detection problem as
follows: for a given set of user waveforms represented in signal space by the set of signal vectors,
{Sk} K, Sk E EN, the general uncoded detection problem is to compute an estimate of weights, b,
from an observation r E RN

K

r = E bksk + (n = Sb + an, (1)
k=l

where

* K is the number of users.

· b E {[bl ... bK]T I bi E Pi}, where Pi is some finite set of real amplitudes and bi is iid uniform.
For Pi having M elements, this is M-ary PAM.

· S = [sI,...,sK] is an N x K matrix whose columns are user signal vectors as seen at the
receiver.

· n is a real Gaussian vector of mean zero and identity covariance.

*· o is the noise standard deviation.

One case in which detection is simple is where the user waveforms are orthogonal. In this case,
once again, a matched filter followed by a quantization to the closest weight used in transmission is
optimal for each user.2 The restriction to orthogonal signal sets, however, is often not a satisfactory
one for several scenarios.

A first reason for the investigation of MA with non-orthogonal signal sets is motivated by signal
variations induced by the channel. For example, in typical terrestrial MA systems the communication
channel can introduce signal distortion such as multipath. Clearly, in such a situation there is a
need to estimate the time-varying channel. For this paper, we assume that the channel is capable of

1In binary communications this weight takes on one of two values. Among the most popular methods for binary
PAM is binary phase-shift-keying (BPSK) in which the weights are {+1, -1}. For general M-ary PAM, however, M
possible values are allowed for these weights.

2 Forcing user transmissions to be orthogonal or nearly orthogonal, even at the expense of inserting wasteful buffer
zones in which no user is permitted to transmit, is common practice in systems of present.
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being estimated and is, hence, known. Channel distortion, in general, does not allow (either through
signal design or through equalization) for the received signal to be written as a weighted sum of
orthogonal waveforms plus white Gaussian noise.

A second reason for investigating non-orthogonal signal sets is the difficulty of achieving accurate
synchronization among users. Often, the orthogonality of a set of waveforms is a result of careful
timing alignment (such as in TDMA). If the relative time shifts in the transmitted signals are not
controlled, orthogonality cannot be maintained.

Finally, the assumption of orthogonality among user signals must be abandoned if we are to
offer service to more users than orthogonality would allow. In the absence of channel distortion
(e.g. MA satellite systems employing narrow beam terrestrial antennas) and timing inadequacies
(e.g. systems employing a timing acquisition step), it is possible, in principle, to limit ourselves to
orthogonal signal sets. Of course, this choice limits the number of users to the dimension of the signal
space available for transmission. "Over-saturating" the signal space with users can, in principle, be
accomplished with minimal impact on system performance, assuming that optimal detection can be
implemented. 3 It is, therefore, desirable to increase the number of users beyond the orthogonal limit
in order to enhance both system utilization and throughput. The success of such a system requires
that the problem of optimal detection for non-orthogonal signal sets to be confronted.

The challenge, then, is to design optimal detectors for MA systems that employ non-orthogonal
signal sets. As discussed in [2], the optimal joint detector for an arbitrary, non-orthogonal signal
set has exponential complexity in the number of users, K. This is a catastrophic increase over the
linear complexity of a bank of matched filters, one for each user. Surprisingly, though, the most
common method currently used is a bank of matched filters where for each user the interference from
all other users is considered as a second source of "noise". With this type of detection, however, it
is understood that the error rate will be higher than that obtained by the computationally complex
optimal detector.

Indeed, as argued by Lupas and Verdii in [1], the performance loss of such an approach, as
compared to the optimal, can be significant. 4 This has motivated several researchers ([1, 2, 3, 4]) to
consider more complex, suboptimal detection algorithms that perform joint detection for all users;
better performance than the simple matched filtering approach is achieved with complexity that is
at most polynomial in the number of users. These methods, however, require the set of user signals
to be linearly independent5 and work best when the signal energy to noise energy ratio is very high
for all users.

In contrast, this paper addresses the problem of finding an optimal joint detection algorithm
for the case of K > N users in N-dimensional signal space that, like the suboptimal detectors,
has complexity which is a low-order polynomial in the number of users. The key to devising such
a detection algorithm is to choose the set of user waveforms so that an advantageous geometric
structure is present.6 In particular, the class of signal sets we consider has a hierarchical tree
structure that allows for a rich variety of possibilities. For example, this desired tree structure is
present in signals of considerable current interest in the signal processing literature such as wavelets
and wavelet packets. In addition, in the communication literature, we find that Ross and Taylor
([6, 7]) have developed signal sets that fit K > N users in N dimensions while preserving the
orthogonal minimum distance. The tree hierarchy is a by-product of their design.

In the next section the signal set structure of interest is described and illustrated and notation is
3
Moreover, as can be seen in the work of Ross and Taylor [6, 7], it is, indeed, possible to design signal sets having

more users than dimensions where the inter-decision-point distance resulting from use of this set is the same as that
achieved by an orthogonal set. Their design constrains all users to have powers no higher than the users in the
orthogonal set. Section 2.1 summarizes the results of Ross and Taylor in greater detail.

4In particular, for the "near-far" problem (large power variations among users) the conventional detector fails
consistently.

5
Although some of these detection algorithms may be applied in the linearly dependent case, they were not intended

for the over-saturated problem and, therefore, give very poor performance.
6

This implies that the transmitters have the flexibility to generate signals with the desired structure.
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established. In Section 3 an overview of the hierarchical tree joint detector is given via an example
and a formal derivation of the low complexity optimal detector is done along with a calculation of its
computational complexity. Section 4 details the processing procedure of the tree detection algorithm
and steps through a binary example. The paper is concluded in Section 5.

2 The Signal Sets

2.1 Signal Vector Set Structure

The geometric structure imposed on the signal vector set7 is best described by saying that the set
of signatures has tree-structured cross-correlations. Specifically, S will have the desired structure if
the signal vectors can be assigned to the nodes of a tree like the one shown in Figure 1. The tree
pictorially conveys the following required relationships among user signal vectors.

* Each vector at a given level of the tree is orthogonal to all other vectors at that level.

* A signal vector is correlated only with its ancestor vectors (parent, grandparent, etc.) and its
descendent vectors (children, grandchildren, etc.).

Both linearly dependent and linearly independent sets of signature vectors may be created to have
tree-structured cross-correlations. The detector detailed in this paper finds the optimal solution for
both cases.

The constraint of tree-structured cross-correlations, while very particular, actually allows a con-
siderable amount of flexibility in designing user waveforms. Given a tree, we may construct a signal
set that possesses the desired cross-correlation structure. Assume that waveforms at the bottom
level of the tree comprise an orthogonal set. We obtain an orthogonal set at any level, i.e. the 1 th

level, by constructing a signal at each node at this level as a linear combination of the signals at its
bottom-most descendent nodes. Since we have a tree with orthogonal signals assigned to the lowest
level nodes, the sets of descendents for distinct nodes at the 1 th level are disjoint, and consequently
the signals created at level I are mutually orthogonal.

It follows that the general construction of a signal set with tree-structured cross-correlations
requires (a) the specification of the tree structure (i.e. the number of levels, L, and the parent-child
relations for all levels of the tree; (b) the specification of any orthogonal basis s 1,s2,.--,sN, of
ERN which we then assign to the N nodes on the finest scale of the tree;8 (c) the specification of
the weights for each of the linear combinations used to construct signals from their bottom-level
descendents; and possibly (d) the deletion of signals at any of the nodes. This formulation allows for
considerable flexibility in designing the signal set since any choices that satisfy (a)-(d) will lead to
the desired geometric structure on the signal set. Note also that (d) provides us with the flexibility
to capture linearly independent sets with the desired correlation. 9

2.2 Some Examples of Signature Sets

As we have indicated, there are many different signal sets that can be constructed to have the tree
structure we have just described. In this section we illustrate examples of two particular choices
of signal vector sets, one of which involves signals of considerable current interest in the signal
processing community, namely, wavelets and wavelet packets ([8, 9]) and one that was introduced in
[6] directly in the context of designing signal vector sets for over-saturated MA systems.

7
For ease of notation, we use the abstract signal space representation of real signals, and, hence, all properties

imposed on the signal vectors will also be true for the real waveform counterparts.
8Without loss of generality, we assume that the bottom level of the tree has exactly N nodes.
9
For simplicity, however, (and since we wish to emphasize the applicability of our methods to the over-saturated

case) we will assume that our tree is full, i.e. that there is a user signature at each node on the tree. The extension
of our low complexity optimal detection scheme to the case in which there are fewer users is immediate.

4



Wavelet Packet Sets
Wavelet and wavelet packet waveforms may be generated from a tree-structured procedure in which
subspaces (generated by sets of orthogonal signals) are decomposed into Cartesian products of
orthogonal lower-dimensional subspaces.1 0 The result is a wavelet or wavelet packet dictionary
consisting of an over-complete set of basis functions. A discrete wavelet packet dictionary offers a
rich set of signal vectors from which to select many tree-structured sets. An example of a discrete
wavelet packet signal set is shown below as an intensity matrix where each element of the matrix
is shown as a pixel in the 8x 11 image. The values are shown in gray scale where the smallest is
denoted by white and the largest is denoted by black.

S =

In order to reveal the tree-structured cross-correlations, the absolute values of the elements of
STS are displayed below, where 0 and 1 are denoted by white and black, respectively.

STS

The wavelet packet signal vector set can be cast onto a tree with three levels as shown in Figure
2.

Minimum Distance Sets
Another example is the minimum distance sets developed by Ross and Taylor in [7]. Ross and Taylor
begin with N orthogonal users in N dimensions. The set of possible received points based on an
M-ary PAM MA system with an orthogonal set of signal vectors has associated with it a minimum
distance. That is, if {S1, S2,... , sN} is the orthogonal signal set, then there is a specified minimum
distance between any two points in the set {_=l bisi i bi e P}. Since the distance between the
elements in this set are directly related to the probability that the optimal detector makes an error,
maintaining a specified minimum distance is desirable. Ross and Taylor devise a method for adding
additional, energy-constrained, linearly dependent users so that the minimum Euclidean distance
between received points is preserved. We refer the reader to [7] for details of their construction.

Ross and Taylor, for antipodal binary modulation, P = {+1, -1}, fit 4N - 3 unit energy signal
vectors into N dimensions where N must be a power of 4. A specific example detailed in [7] is briefly

°OFor a tutorial treatment of wavelet packets see the paper by Coifman and Wickerhauser [9].
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repeated below.
1/2 0 0 0 1/4
1/2 0 0 0 1/4
1/2 0 0 0 1/4
1/2 0 0 0 1/4
0 1/2 0 0 1/4
0 1/2 0 0 1/4
0 1/2 0 0 1/4

S - 16 0 1/2 0 0 1/4 (2)
I_ 6 0 1/2 0 1/4

o 0 1/2 0 1/4
0 0 1/2 0 1/4
o o 1/2 o 1/4

0 0 0 1/2 1/4
0 0 0 1/2 1/4

Here, 16 is the 16 dimensional identity matrix. The correlation matrix, STS, is given below, again,
as an intensity plot with 0 and 1 corresponding to white and black, respectively.

S
T

S

The structure of STS reveals that this minimum distance set of signature vectors may be cast onto
a quad tree for which 4 children emanate from each parent node. The signature vector associated
with the top of our correlation tree is the right-most column of S. The first 16 columns would be
associated with the bottom of the tree. These signature sets were designed in [6] for their minimum
distance property. The tree hierarchy they possess is a by-product that, happily, can be exploited
in the optimal detector we describe.

2.3 Notation

We introduce notation that will be used throughout the remainder of this paper.

* n: node index

* pn: index of the parent to node n

* pmn: index of the ancestor to node n that is rn levels above n.1 1

1 1 Note that if node n is at level 1, the index of the root node can be denoted by pl-ln.



* an = {pn, p2 n, p3 n,. , p- }: set of indices corresponding to the ancestor nodes of node n12

* cni: node index for the it h child of node n

* Kn: number of children of node n

cn -{cnl, cn2, ... , cnKn): set of indices corresponding to children of node n

* dn = {cnl, dcnl, cn2, dcn2, , cnKm,, dcnmK ): set of indices corresponding to the descendent
nodes of node n13

· fn = {n, dn): the family of indices associated with node n14

Note that the set of descendents for n at the lowest level of the tree is empty, i.e. dn = 0, Likewise,
the set of ancestors for the root node is empty, i.e. an = 0.

Using the above tree index notation, the weight estimate and signature vector associated with
a node, n, of the tree may be denoted by bn and sn, respectively. Collect the weight estimates and
signature vectors of all ancestors of node n into a column vector, ban, and corresponding signature
matrix, San, respectively. Here, the columns of San are the signature vectors, si, i E an. Similarly
defined are bdn and Sdn.

For the derivation of the estimator in Section 4 we will require the inner products between the
user signals

Yi,j = ssj (3)

Extending this definition, we establish the following:

* Yi,an = STSan, row vector of inner products between a signal and its ancestor signals

* Yi,dn = SiTSdn: row vector of inner products between a signal and its descendent signals

* Yan,dn = S dnSdn: matrix of inner products between ancestor and descendent signals

* Ydn,dn = SdnSSd: matrix of inner products among the group of descendent signals

The first key signal processing operation in our algorithm will be the calculation of the following
set of coefficients from the received signal r:

li =sTr, i= 1,2, .,K (4)

The calculations of each 1i corresponds to processing the data r through a filter matched to the
signal si.

Due to the manner in which we create our tree-structured signal set, both the inner products
and the matched filter outputs for nodes above the bottom level can be easily calculated from the
sets {yiii= and {li})N l, respectively. This will allow for an efficient calculation of these quantities.

If we were to adopt a tree-recursive construction for our tree-correlated sets we would realize
further simplification in calculating the sets of Yi,j and li. A tree-recursive set requires the signal,
sn, at an node n to be a linear combination of its children, only.15 If we define Scn to be the signal
vector matrix for the signals that lie at the children nodes of node n, we require the following signal
set construction

Ken,

Sn = Scnhn = hn,cnscni (5)
i=l

where the elements of hT = [hn,,n hn,,c2, hn,cn,,,] are known but arbitrary.

1 2 This ordering of ancestors is important and will be useful later.
1 3 Note that dn is recursively defined, where dcni is the set of descendents of node cni.In addition, the ordering of

nodes into sub-tree groupings will be useful in later sections.
1 4 Each set of family indices corresponds to an entire sub-tree having root node corresponding to node n.
15 Note that both the minimum distance and the wavelet/wavelet packet sets can easily be chosen to exhibit this

tree-recursive quality.
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To illustrate a tree-recursive signal set, consider the signal set shown in Figure 3. This signal set
comprises 7 users in 4 dimensions. The four signals, {s1,s 2,s 3,s4}, at the bottom of the tree form
an orthogonal basis for ]R4, and the three upper-level signals are as shown in the figure.

The inner products, y,,i, of recursive tree-structured signals can be quickly computed from h,
and I[Si[12

= Yi,i for i = 1,.. , N. In particular, from Equation (5), since the signal s, at node n is
expressed in terms of the signals at its children, we have y,,i = hST Scn,i. It follows that
the yi,j can be calculated in a pyramidal fashion from the bottom of the tree to the top.

Due to a tree-recursive creation of the signal set, the matched filter outputs for nodes above the
bottom level can also be calculated in a pyramidal fashion. Specifically,

in = hTScTr = hTlcn (6)

where lCn is the column vector having elements lk, k C cn. For our example of Figure 3, we calculate
11, 12, 13, and 14 at the bottom level of the tree. Then, at the next level of the tree we compute

15 = h5,l 1l + h5, 212 , 16 = h6 ,3 13 + h6 ,4 14 (7)

and at the top level of the tree
17 = h7,515 + h7, 616. (8)

The structure of these calculation is reminiscent of the structure of the calculations involved in
computing wavelet or wavelet packet coefficients at a sequence of scales ([9]).16 It follows that the
computational complexity of determining the li's is comparable to that of a wavelet transform: for an
N-dimensional signal space with K users there are N matched filter outputs li = sTr, i = 1, 2, , N
to be calculated at the bottom level of the tree followed by, at most, (K - 1) additional multiplies
and adds to compute li for the remainder of the nodes on the tree.

3 The Tree Joint Detection Algorithm

3.1 Overview of the Detector

The optimum joint detector for the problem stated in Equation (1) chooses the weight vector esti-
mate, b, according to the nearest neighbor or minimum distance rule.

= arg min Ilr-Sbll2 (9)
bcPK

For ease of discussion, we assume each user employs the same M-ary PAM for the remainder of this
paper where bi E P, Vi; this assumption is not essential to the operation of the tree algorithm. An
MA system employing an arbitrary set of signal vectors, S, can achieve the optimal detection of the
above detector through an exhaustive search, i.e. the detector needs to perform MK - 1 comparisons
to find the best estimate ([2]).

If the signal set has been constructed to have the tree cross-correlation structure described
in Section 2.1, the optimum detector of Equation (9) can be achieved through a tree-structured
algorithm that offers a huge reduction in the number of comparisons. In particular, because of this
structure, a signature at a given node is correlated with all signatures at its ancestor and descendent
nodes and is orthogonal to all other signatures on the tree. The weight estimate, b,, at a given node,
n, therefore, will effect the estimates at descendent and ancestor nodes but will not effect the other
estimates on the tree.

16In our case, however, we do not require the coefficients in the vectors hn to correspond to the filter coefficients
used to construct orthogonal wavelets or filter banks. Moreover, we do not require a regular structure - e.g. different
parent nodes at the same level of the tree may have a different coefficients in their hn vectors and may also have
different numbers of children.
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A simple example provides the basic idea. Consider the tree structure in Figure 2 and consider,
first, the choice of the weight estimates for users 1 through 4 having signal vectors sl,s2,s 3 ,s 4 .
These vectors are mutually orthogonal and are also orthogonal to S5 , S6 , S7, S8 and s1 o but not to sg
and s1l. Since s5-s8 and sio are also correlated with Sil, the decisions on weight estimates for these
users are not decoupled from those for s1-s4. We can, however, decouple these by looking, instead,
at the conditional estimates. Specifically, for each possible pair of weight estimates for ss and Sal,
we can compute the optimal weight estimates for sl, s2, S3, S4 independently - i.e. the problem to be
solved for each of these weight estimates is decoupled not only from the other three but also from
the weight estimates corresponding to s5-s8 and s1o. The result of this calculation for sl-s4 can
then be thought of as producing a conditional weight estimate table, i.e. for each possible pair of
choices for the weight estimates for s9 and sil we now know the optimal weight estimates for sl-s4.
Similarly, for each pair of possible weight estimates for s1 o and sil we can compute the optimal
estimates for s5-s8. If we now consider s9, we can iterate this process: for each possible choice of
weight value for its ancestor sil and with knowledge of the just-constructed conditional estimate
table for its descendents s 1-s4, we can compute the optimal estimate for s9 in a manner decoupled
from the analogous computation for sio. This gives conditional estimate tables for sg and slo which
then can be used to determine the optimal estimate for sil at the top of the tree. Conceptually,
once we have this estimate it is a simple matter of successive table look-ups as we propagate down
the tree to determine the optimal estimates first for sg and slo and then for their descendents.

As this simple example illustrates, the tree detection algorithm takes advantage of the tree
structure and sweeps through the tree from bottom to top, creating a conditional weight estimate
table at each node. The table of decisions at a given node is conditioned on weight decisions of the
ancestors and is a function of weight decisions of the descendents. Since each conditional estimate
table requires entries for each possible combination of weights at all ancestor nodes, the number
of computations needed to create a table and the size of the table is exponential in the number
of ancestors (since if there are 1 ancestors there are M l possible sets of weight values for these
ancestors). This complexity decreases exponentially as I decreases, i.e. as the algorithm moves from
the bottom to the top of the tree the number of decisions made at each level decreases exponentially
until there is only one decision associated with the top node of the tree. The full weight vector
estimate for all user weights is a by-product of the last decision at the top of the tree.

While the complexity of the procedure as we have described it to this point is exponential in
the number of levels in the tree (which bounds the number of ancestors of each node), the actual
algorithm complexity is, in fact, extremely modest. If the tree were of uniform construction, i.e. if
there are Q children emanating from each node, the number of levels of the tree is logarithmic in the
number of users, K. Hence, the overall complexity is, then, bounded by a very low-order polynomial
in K. This is discussed more fully in Section 3.3.

Moreover, while the derivation of the general algorithm given in the next section is most easily
explained (and its optimality proved) in terms of conditional estimate tables, it is actually possible
to use the structure of the signal sets to simplify the required on-line processing. The details of the
calculation of the estimates are given in Section 4.

3.2 Derivation of Tree Detector

The global cost that must be minimized in Equation (9) is

F(r, b) = Ir - Sbl 2. (10)

In general, F(r, b) is not separable by weight variables, bi. Hence, the solution to Equation (9) is
found by the calculation and comparison of F(r, b), Vb e pK.

The introduction of tree-structured cross-correlations transforms the structure of the cost func-
tion. We may reduce complexity of finding the smallest cost by making decisions in stages. The

9



independence of the decisions is seen mathematically. We wish to separate the global cost into
independent terms. In general, we may re-write Equation (10) as

N N

F(r, b) = fi(r, b) = (r[i]- t[i])2 (11)
i=l i=l

where t = Sb and t[i] is the it t
h element of the vector t. In general, each term fi(r, b) is a function

of all users' bits.
If the signature set were to exhibit tree-structured cross-correlations, a rotation matrix SR may

be constructed from the orthogonal basis vectors that reside on the bottom of the tree.

SR SI= [| 2 | | N (12)
IIS11 I IIS211 fIIsN I]

The cost of Equation (10), therefore, may be equivalently expressed as1 7 random vector, r, and
a deterministic vector, Sb, a rotation of the difference vector r - Sb does not change its length or
probability distribution.

F(r,b) = ISTr- STSblI2. (13)

The rotation transforms the signal matrix so that the tree structure is reflected by the position of
the zero-valued elements. In this form, the partition of F(r, b) into terms is

N N

F(r, b) = E fi(r, b) = (f[i] - [i]) 2, (14)
i=l1 i=l

where r = S r, t - STSb, and where the indices i E {1,2, - N} correspond to the orthogonal
users at the bottom nodes of the tree.

For example, the rotated version of the wavelet packet signal matrix from Section 2.2 is

and it is clear to see that t[i] = [STSb][i] can be written as a linear combination of bi and the
elements of bai. Here, we have used the ancestor vector notation from Section 2.3.

In general, it follows that the "rotated" cost may be separated into additive terms where each
term is a function of only one of the weights bi, i E {1, 2,... , N} and all of the weights that correspond
to its ancestors. We may write each term as fi(r, bi,bei). Note that given the values for bai and
bhj for i :$ j, fi(r, bi,bai) and fj(r, bj,baj) have no common unknown parameters. Hence, we may
determine the optimal solution through the optimization of each term conditioned on the values of
the weights corresponding to the ancestors of the index, i, of that term.

Since the optimal cost function to be minimized is capable of being decomposed into disjoint
parts, a dynamic program may be written to solve the minimization problem. The structure of such
a dynamic program is shown for a simple example in Figure 4.18 The metric values for each branch
are the terms, fj(r, bj, baj). The unlabeled branches have metric value of zero. In general, the Viterbi
algorithm is carried out stage by stage where several cumulative path metrics are constructed and
decisions are made at every instance of merging paths. The final and optimal decision is made at
the terminal node.

1 7
Since the cost function of Equation (10) is a Euclidean distance between a Gaussian

18Viterbi is credited for the application of dynamic programming to the trellis diagram ([10]).
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For a system employing an L-level tree and M-ary PAM for all users, at any interior stage of the
graph we must retain no more than ML paths. Recall that the number of levels in the tree is likely
to be a logarithmic function of the number of users, hence the number of paths to keep track of at
any given stage of the dynamic program is a low order polynomial in the number of users.

3.3 Computational Complexity

The conceptual description of the tree detector in Section 3.1 and the dynamic programming de-
scription in Section 3.2 inevitably include many wasteful calculations and storage requirements. The
discussion in Section 4 addresses the removal of this redundancy. Furthermore, it is expected that
for each different tree structure and modulation a streamlined implementation is possible. Since
we are concerned with the order of complexity of optimal detection for this paper, we calculate the
complexity of the conceptually simplest, although admittedly inefficient, version of the tree detec-
tor. The resulting complexity of this "inefficient" version leads to an upper bound on tree detector
complexity that is extremely low.

For simplicity of calculation of computational complexity, we restrict the tree to be of uniform
composition in that there are exactly Q children emanating from each node. Recall that N is the
number of signal space dimensions available (the number of nodes at the bottom of the tree) and M
is the number of levels that can be modulated by each user. We measure complexity as the number
of compares, c, needed to perform the tree algorithm;1 9 c is stated below and derived later in this
section.

c(N,Q,M) = M NQMlogQN+ l-1 (15)
QM-1

For example, if a system were to employ antipodal modulation, P = {+1,-1}, M = 2, and
signal sets having quad-tree (Q = 4) structure such as the minimum distance waveform sets of Ross
and Taylor, the number of comparisons needed for the tree detector estimate is

8N 3 / 2 -1
c(N, Q = 4, M = 2) = 7 (16)

The computational complexity is polynomial in the number of dimensions. The number of users,
K, in this special case is K = 1N - 1, hence, the tree detector is also polynomial in the number of

users, resulting in a computational complexity of O(K3 / 2).
We now derive Equation (15) by counting the number of comparisons needed to execute the tree

algorithm. Some facts used in the complexity calculation follow:

* Each node at level I has l - 1 ancestor nodes.

* There are Q-1 nodes at level I of the tree.

* The tree has a total of L levels (counting the top as level 1).

* There are N = QL-1 nodes at the bottom of the tree, thus, L = logQN + 1.

The algorithm creates a conditional bit estimate table for each node. For a given ban we must
choose the best of M possible values of bn. This requires M- 1 comparisons for a single configuration
of ban. Since there are I - 1 ancestors of node n, there are M`-1 possible configurations of ban. The
tree detector, therefore, creates a single table at level 1, node n, with (M - 1)M t- 1 comparisons.
There are Ql-1 tables needed for level I of the tree and there are a total of logQN + 1 levels in the

1 9 Counting the number of comparisons is equivalent to counting number of tentative decisions that must be made.
Without computational optimization of the algorithm, each decision requires the computation of two metrics. Each
metric requires several adds and subtracts. To find the order of the complexity of the tree algorithm, it is sufficient
to count the number of compares.

~~p-"--~ C _______ ~~ _---·--- -~~C- 1



tree. It follows that the total number of comparisons needed for the tree algorithm is

logQ N+1

c(N, Q, M) = Q -(M - )M
1=1

(M-1) (QM) -°1QN+l

(M 1) (NQM'ogQN+l 1)
(QM - Q-1

4 Signal Processing for the Optimal Tree Detector

4.1 Calculation of the Estimate

As was shown in Section 3.2, each weight estimate is related to the weight estimates corresponding
to its ancestors and descendents. Mathematically, this dependence is revealed as the reduction of
the general optimal estimator of Equation (9) to the tree-structured optimal estimator below. For
each node, n, of the tree calculate the following estimate conditioned on the value of the set ban

bn(rlban) = arg min Ir - sb,- S,,bn - Sdnbdn(rlbn, ban)112 , (17)
b,, G P

where we need the vector of numbers dnl(ribnban). The set of estimates for all descendants of
node n has already been calculated in the previous steps of the algorithm. Hence, bdn(rIbn, ban) is
best defined recursively. For a given set of values for {bn, ban}, we have

lbfcn (ribn, ba)

ibdr(ribn, ban) bfn2 (rlbn ba) = (18)

bfcnK,, (rlbn, ban)

For that same set of {bn ban} we have already calculated bcni(rlbn ban); if the value found for
bcni (rlbn ban) is g, then the sub-vector on the right hand side of Equation (18) are given by

bfcn(rIbn, ba) = [ bcni(rlbn ban) = ] (19)
Ldcn (ribcni = (, bn) ban) '

We examine the argument of the minimization in Equation (17) more closely. We can, of course,
remove any terms that do not depend on bn and we can multiply by any positive constant. 2 0 As a
result, some algebra shows that (17) is equivalent to

bn(rlban) = arg max J(bnlr, ban) (20)
b,,, E P

where

J(bnlr, ban) = [lnbn by,n] - bnYn,anb,,an (21)

+[ldnbdn(rlbn, ban)- 2bdn(rlbn, ban)Ydn,dnbdn(rlbn, ban)] (22)

-bnyn,dnbdn(rlbn, ban) (23)

-b TnYan,dnbdn(rlbn, ban) (24)

2 0
or multiply by a negative constant and replace minimization by maximization
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From this, we wee that the only explicit processing of the data r is for the terms In = sTr and
Idn = STdr on lines (21) and (22).

The first bracketed term [lnbn - -bnn,n] on line (21) corresponds exactly to the decision statistic
that would be used to choose bn if there were no other users to consider or if all other users had
orthogonal signals. The remaining terms, then, represent the adjustments of this decision statistic
to reflect the impact of the non-orthogonality in the signals. The last term on line (21), bnyn,anban,
represents the interaction between the choice of bn and the particular hypothesized choices for
the ancestor weights. Note that since we are hypothesizing the values of ban this term can be
precomputed. Line (22) represents a counterpart to the bracketed term on line (21). Specifically, if
all users other than the ones corresponding to the weights bdn were not present, then

[ldnbdn - 2 bdnYdn,dnbdn] (25)

represents the decision statistic that would be used to determine the optimal choice of bdn. Since
this not the case, this term incorporates the decisions bdn(rlbn, ban) conditioned on the value of
{bn, ban}. Line (23) accounts for the interactions between these descendant decisions and the possible
decisions bn . Likewise, line (24) accounts for the interactions between the descendant decisions and
the hypothesized decisions ban at the ancestors of node n. Thus, all of the quantities needed in the
last three lines (22-24) can be computed based on the value of bn and the calculations that have
already been performed at lower levels on the tree.

4.2 The Binary Conditional Decision Rule

We focus on the binary antipodal signaling case, i.e. when P = {+1, -1}. For each choice of ban
there is only one comparison to make for the minimization of Equation (20)21. The solution to (20)
can, therefore, be expressed as2 2

bn(rlban,) = sgn [J(+ l lr ) - J(1r, ban(26)

Substituting the definition of J(bnlr, ban) from lines (21-24) into Equation (26) and performing
some algebra, we find that (26) can be written as

bn(rlban) = sgn [n - 6,(ban) - En(rlban)]. (27)

The conditional decision rule at node n for each choice of ancestor bit vectors, ban, corresponds to
comparing the matched filter output, In, to a threshold.

b +1
In < Sn(ban) - n(rJban) (28)

b =-1

The threshold on the right hand side of Equation (28) has both a deterministic componentreflecting
the influence of the hypothesized decisions at ancestor nodes

6n(ban) = yn,anban (29)

and an adaptive component reflecting decision rules already constructed at descendent nodes

en(rlban) = -Yn,dn [bdn(rI + 1, ban) + bdn(r - 1, ban)]

+± [tTn(rJ + 1, ba,)Ydn,dnbfidn(r + 1, ban) - fn(r - 1, ban)Ydn,dnbfdn(rf - 1, ban)] (30)

+1 b nYan,dn -7dn] [bdn(rI + 1,ban) - bdn(r - l,ban)]

2 1 For the more general M-ary case, there would be (M - 1) comparisons.
2 2 Dividing by 2 in (26) has no effect on the sign and is included to put the subsequent expressions into a form that

can be compared with standard results.
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In particular, note that for nodes at the bottom level of the tree, there are no descendents and,
consequently, en(rlba,,) = 0. Hence, at the lowest level of the tree, the decision rules in Equation (28)
for each of the hypothesized set of values, ban, correspond to comparing In to the fixed threshold
given in Equation (29). This non-zero threshold represents the adjustment of the test statistic to
reflect the effect of users at ancestor nodes.

The calculations of en(rlban), the adaptive portions of each threshold, have a child-separable
structure.

En(rlban) = Vqcni (rlban) + 7Cn2 (rlban) + + 7JcnK (rlban) (31)

This is easy to see from the structure of Ydn,dn. Note the grouping structure of Sdn = [Sfnl Sfcn2 '.. SfcnKl].

That is, Sdn consists of orthogonal sub-matrices, one for each child and its descendents. Further-
more, for each child node, Sf cn, = {Scn, Sdcn; }, Sdcni consists of orthogonal sub-matrices. It is this
nesting of orthogonal sub-matrices that gives Yd1,,dn a nested block diagonal structure that leads to
the separation of En(rlban) into terms.

In (31), the term rcn;i (rlban) represents the contribution of the ith child of node n to the adaptive
threshold at node n. Hence, the calculation of the adjustment en may be done in parts, one for each
child of node n. We use the family notation, fn = {n, dn} in showing the formula for the terms of
Equation (31)

?7n(rlbapn) = ½Ypn,fn[bfn(rll, bapn) + bfin(r - 1,bapn)]

4+[bfn(r1, bapn)Yfnffnbfn(r[l, bapn)] - bfn(rl - 1,bapn)Yfn,fnbfn(r - 1, bapn)] (32)

+ -ba'pnyapnfn - 1Tn][bfn(rll,bp) - by (rI - 1,bapn)]

We may organize the implementation of the optimal decision rule as follows. Starting at the
bottom of the tree and progressing to the top, we construct augmented decision tables as illustrated
in Table 1.23

At each bottom node n, we compute the conditional optimal decision bn(rlban) by comparing
In to the precomputed threshold 6n(ban). For each node at this level we may calculate and store
r7n(rlban) to be used at the next level. We move to the parent node, pn, calculating the threshold for
this node by starting with the pre-computable portion, 6pn(bapn), and adding to it the adjustments,
r/n(rlban), from each of the children of node pn. We compare Ipn to this threshold to make a decision.

For the root node, n, corresponding to the top level of the tree an = 0 and 6n(ban) = 0, hence,
there is a single threshold to be computed from the s7' stored at the children of the root node.

4.3 A Binary Example

Let us illustrate this procedure for the simple signal set shown in Figure 3. Consider node 1 at the
lowest level. In this case the table that is constructed for node 1 is shown in Table 2. Note that
each value of ql (rib7) depends on the two decisions 1 (rl + 1, +1) and bl(rl - 1, +1).

1 1
71(r +1) [ 1(r + rl, 1)-+ - [y=- 11] [(r + 1, +(r-1, +1)] + 1[(r -1 , +1)]

(33)
and

rh(rI-1) = 2ys,[b1(rJ+1, -)+ (r , -1)]+ [-y,i-][ (r1, -1)-bi(rJ-1, -1)] (34)

For example, suppose Y1,5 = Y5,1 = 2 and Y1,7 = Y7,1 = 1 and 11 = - . In this case we can
calculate the decisions and the corresponding values of the qri's. This has been done in Table 3.
Similarly, tables are also constructed at the other bottom level nodes, 2-4.

2 3 Notice that there are half as many values of r77 in the table as there are values of bn,. Since there is one value of
r7n for each value of bapn, we organize the values of ba, into pairs corresponding to [±1, bapn].
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Moving to the next level of the tree, consider node 5. In this case we compute the following
conditional estimates.

b5 (rl + 1) = sgn(15 - Y5,7- ll(rl + 1) - /2(rl + 1)) (35)

and
b5(rl - 1) = sgn(15 + y5,7 - 1(rl- 1) - 2(rl - 1)) (36)

where ql(rl + 1) and ql(rl - 1) are the quantities in Table 2 for node 1. Similarly, 72(rl + 1) and
r(rl - 1) are the corresponding quantities that would be in the table for node 2. At this point note
that we can discard part of Table 2 and part of the corresponding table for node 2 and consolidate
the remaining information into a single table for node 5. Specifically, suppose that b5(rl + 1) = -1.
This implies that the best choice for bs is -1 if b7 = +1. We can discard the first row of Table 2
since this corresponds to choosing b5 = +1 when b7 = +1. Similarly, we can discard the analogous
row of the table for node 2. That is, once we have computed the values in Equations (35) and (36)
we can assemble the following vectors.

6 b(r+1 5(rl + 1) b5(r -1) 1
bfs(r1(rl + 1) (r(r + 1), +1) , bfs(r- 1)= b1(rbs(rl - 1),-1) (37)

b2(r1b 5(rJ + 1), +1) b2(r1b 5(rl - 1),-1)

We may now construct Table 4 which would reside at node 5.
Since node 7 has no ancestors, a single threshold correction, q/5 (r), is calculated from Equa-

tion (32) with n = 5 by dropping the last term since ap5 = a7 = 0. The calculation of q5 (r) from
(32) would use the following substitutions.

Y5,5 Y5,1 Y5,2
Ypn,fn = Y7,f5 = [Y7,5 Y7,1 Y7,2], Yfn,fn = Yf5 Y,f 5 5,1 Y,1 0

Y5,2 0 Y2,2

Finally, at the top of the tree, since an = 0, 67 = 0, and the optimal decision rule at node 7 is

b7 = sgn(17 - 7s5 (r) - r76 (r)) (38)

where r76 (r) is computed in an analogous fashion through the construction of the table for node 6.
Once we have b7, e.g. b7 = +1, we immediately have the full optimal estimate by picking off the
appropriate elements of the tables for nodes 5 and 6, e.g. bfs(rl + 1) and bf 6(rl + 1).

5 Conclusion

In this paper we examine the problem of uncoded multiple access (MA) joint detection for the case
in which user signatures are not orthogonal. Specifically, we are interested in the "over-saturated"
scenario that would occur when the number of users in a communication system is increased beyond
the dimension of the signal space available for transmission. This over-saturating of the signal space
with users can, in principle, be accomplished with minimal impact on system performance, assuming
that optimal detection can be implemented. The optimal detector for the general over-saturated case
has a complexity which is exponential in the number of users. In this paper, we find a low complexity
optimal algorithm for this case through the imposition of a hierarchical cross-correlation structure on
the user signature waveforms. The tree-structure is explained and the tree-detector is derived. This
tree processing procedure takes advantage of the cross-correlation structure that has been imposed;
the algorithm is pyramidal in that estimates and thresholds calculated at a given level of the tree
are either discarded or used in the calculation of estimates at the next higher level of the tree.
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The tree detector gives the optimal estimate with an extremely low computational complexity. The
complexity is derived and for typical cases of interest it is bound by a low-order-polynomial in the
number of users. This is an enormous savings in computations over the o(MK)2 4 computations
needed if the signatures did not exhibit any structure.

For the development of the detector in this paper we have assumed that the set of user signals
seen at the receiver exhibit the needed structure. This assumption implies the following: (1) the
channel response, H(.) is capable of being estimated and the set of assigned users signals, xk, leads
to the set of received signals, sk = H(xk), that exhibit the needed tree-structure, and (2) perfect
the synchronization of user transmissions is possible. The future work of the authors includes the
relaxing of these idealizations. The lifting of assumptions leads to two avenues of study (1) waveforms
that retain tree structure in the presence of timing inaccuracies or multipath, (2) examine robustness
of our detector to small violations of signal set structure.
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SN+I

S1 S2 . . . SN

Figure 1: This example of a general tree shows the correlation structure needed among signature
vectors within the signature set.
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Figure 2: Correlation tree for a wavelet packet signature set.
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Figure 3: This is an example of a set of tree-structured signature vectors.

17



S3

51 S2

(a)

b3 b2 b

f2(r, r, 

TERMINAL
ROOT NODE
NODE

f2 (r,- (r,-1,

(b)

Figure 4: (a) Tree sturcture for signature set of 3 vectors. (b) Node/path graph corresponding to
tree in (a) where the unlabeled branches have metric values of zero. Unlabeled nodes are dummy
nodes inserted to reflect the independence between the variables corresponding to either side of the
dummy node.

Table 1: Table created at node n for the general binary case.

bn = [bp1bp2 ... bp( -l)ni bf(rlba) r7n(rlbapn) = -rn(rlbp2n, bp3,..., bp(l-l)n)

[+1, -t+1, +1,., +1] bf.(rl + 1, +1, +1,., +1) 7n(rl + 1, +1, , +1)

[-1, +1, +1,., +1] bfn(r - 1, +1, +1,., +1)

[+ 1, v1 bf(rl, -1, +1*,..., +]1) 7n(rl - 1, +1,.,- +1)

[-1, -1, +1,..., +1] bf/(rl-1, -1, +1,., +1)
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Table 2: Table created at node 1 for the example in Figure 3.
baT = [b5b7] bl(rlbal) 1 (r lb 7 )

[+1 + 1] bl(rl + 1, +1) = sgn(l - y1,5 - y1,7) 1(rj + 1)

[-1 + 1] bi(rl - 1, +1) = sgn(lI + y1,5 - y1,7)

[+1 - 1] b(rl + 1, -1) sgn(li - Y1,5 + Y1,7) r7l(rI - 1)

[-1 -1] b(rl - 1, -1) sgn(ll + Y1,5 + Y1,7)

Table 3: Specific instance of the table at node 1 of our example.
bT = [b5b7] bl(rlbal) I 7l(rlb 7) |

[+1+-1] -1 3/2
[-1 + 1] 1

[+1-1 2 1
[-1 -1] _

Table 4: Table created at node 5 in our example.

b = b7 I b5 (rlb7) / 5(r)

+1 bf5(rj + 1) 75 (r)
-1 bf5 (rIl- 1)
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